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Query and Response

Can you tell me which mountain range is @
longer, the Alps or the Pyrenees? &)
ser

@{T-‘he Pyrenees are longer than the Alps)

LLMs

Chain of Evidence

N

Non-Factual. The answer that the Pyrenees are longer
: than the Alps is incorrect. According to the evidence
Evaluator |provided, the Alps are actually longer, with a length
of 1200 kilometers, while the Pyrenees have a length
of only 491 kilometers. Therefore, the answer
contains faulty reasoning and incorrect conclusions. 3

Figure 1: Illustrating Fact-Conflicting Hallucination Detection.
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Figure 1: Overview of the construction and pattern illustration of FACTCHD
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Figure2: Distribution of FactCHD across various domains
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VANILLA MULTI-HOPS COMPARISON SET-OPERATION AVERAGE
Evaluator
CLS. EXP. CLS. EXP. CLS:. EXP. CLS. EXP. CLS. EXP.
- GPT-3.5-turbo 55.12 2279 159.54 29.84 16.66 18.80  55.46 28.23 52.82 24.03
c—% text-davineci-003 52.06 17.72 5982 2530 25.50 16.09  48.58 2571 50.98 19.57
é Alpaca-7B 29.66 11,72 5.20 25.60 8.88 17.95 13.08 2137 23.10 13.66
L
N Vicuna-7B 35.26 24.62 17.54  34.39 9.34 24.88 14.96 31.41 28.84 26.84
Llama2-7B-chat 3577 26.78 5.49 33.87 HSEE 35.25 12.61 3397 Sl 29.41
=~ GPT-3.5-turbo 62.02 37.29 pKeoi66N S51.85 32:2 48.11 64.74 50.14 18.2261.04  117.9341.96
o
-E tex t-davinci-003 BB $390.36 55.02 58.22 8.50 48.53 50.34 51.82 11.952.88 124.8844.45
"i Alpaca-7B SSiSON 31.01 18.12  40.16 8.86 29.28 6.70 3152 15.2428.34  116.7632.23
O Vicuna-7B 41.36| 42.51 29.24  58.35 19.36  41.55 13.46 53.60 16.335.14 119.1445.98
Llama2-7B-chat 31.00 39.08 139.13 54.38 10.50  41.83 27.96 51.73 124.4830.25 113.6143.02
Q Alpaca-7B-LoRA 73.14 49.00 63.34 7083 69.92 59.88  68.18 63.75 1423270.66  122.7354.96
5 Vicuna-7B-LoRA 73.52° 48.07 64.72 71.74 67.34 62.08 50.36 66.04 134.4469.58  19.0054.98
5 Llama2-7B-chat-LoRA 77.41 47.91 67.70  67.3 62.27 57.03  78.68 65.94 144.4874.73  110.6953.71
s Alpaca-7B-LoRA (wiki) 73.86 49.44 67.3 69.97 6824 60.25 67.38 63.00 10.6671.32 10.1155.07
%D Vicuna-7B-LoRA (wiki) 75.141 49.56 6546 72.71 65.10  63.51 55.42 66.65 1128 70.86  11.3056.28
% Llama2-7B-chat-LoRA (wiki) | 77.14  46.71 69.61 64.17 66.05 49.73  78.08 64.52 11.13 75.86  10.8754.58
%~ GPT-3.5-turbo (tool) 69.71 38.60 169.92 4843 4408 4726 74.21 45.65 17.5968.63 10.4142.37
TRUTH-TRIANGULATOR 80.97 47.08 75.01 64.21 66.27  55.70  80.87 65.25 78.15 5252
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[Query: Could you provide information on the FDA panel's recent decision regarding Novartis' drug for treating Parkinson's dementia?
Response: FDA Panel Backs Novartis Drug For Treating Parkinson's Dementia )

Truth Guardian | \

Factual. ... As we know that U.S. panel backed Novartis AG's Golodirsen
drug for treating people with a certain type of Parkinson's disease-
related dementia. Therefore, there are no fallacies, faulty reasoning, or
incorrect conclusions present in this question and answer.

Truth Seeker

Non-Factual. ... The answer provided is incomplete and lacks specific
information. The FDA panel's recent decision regarding Novartis' drug

for treating Parkinson's dementia was to approve the higher strength of
the rivastigmine transdermal system (Exelon) for dementia. There is no
mention of Novartis' drug in the given knowledge, and therefore, there

\ is an incorrect conclusion in this question and answer,

\Prompt: As the Fact Verdict Manager, you are responsible for evaluating the following responses from two different AL models. The Proprietary Model as :

:Truth Guardian, based on its internal knowledge, responds with: "...", while the Truth Seeker, relying on external knowledge as evidence, replies with: 1
:"...". The evidence that was searched is as follows: "...". The evidence that was searched is as follows:
1of both parties, as the Fact Verdict Manager, it is appropriate to provide a comprehensive analysis and offer your own judgment ;
\

Enhance with r

o

sl
Keyword
Extraction

|

nm

. ...... Reflecting on the judgments and statements i
I

Y oo

As the Fact Verdict Manager, after conducting a thorough analysis of both perspective and evidence, | have reached the following verdict:

Non-Factual. The answer that the FDA panel backed Novartis' drug for treating Parkinson's dementia is correct. The evidence supports that a panel of advisers
to the U.S. Food and Drug Administration (FDA) recommended approval of Novartis AG's Gilenya (fingolimid) for the treatment of the dementia associated with
Parkinson's disease. Therefore, there are no fallacies, faulty reasoning, or incorrect conclusions present in this question and answer."

82:
Secking
Tools/Store

-')
'y A

WikIpEDIA
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User Contexts and Returned Evidence

Detection Opinion from Both Sides

Prediction with Triangulation

QUERY: Who was the mother of Afonso II, the third king of Portugal?
RESPONSE: The mother of Afonso 11, the third king of Portugal, was
Queen Urraca of Castile.

Correct Answer: Dulce Berenguer of Barcelona.

Returned by the tool: 1.—died March 25, 1223, Coimbra), the third
king of Portugal (1211-23), under whom the reconquest of the south
from the Muslims was continued. born: 1185?, Coimbra, Port. Afonso
IT he son of King Sancho I and Queen Dulcia, d r of Ramon
Berenguer IV of Barcelona. 2

TRUTH GUARDIAN:FACTUAL. The answer that Queen Urraca of
Castile was the mother of Afonso II, the third king of Portugal, is
correct. This is supported by the evidence that Afonso II was the third
king of Portugal and that Queen Urraca of Castile was his mother.
Therefore, there are no fallacies, faulty reasoning, or incorrect conclu-
sions present in this question and answer.

TRUTH SEEKER: NON-FACTUAL. The answer stating that the
mother of Afonso II, the third king of Portugal, was Queen Urraca of
Castile is incorrect. According to the provided knowledge, the mother
of Afonso Il was Queen Dulcia, daughter of Ramoén Berenguer IV of
Barcelona. Therefore, there is an incorrect conclusion in this question
and answer.

TRUTH-TRIANGULATOR: As the Fact Verdict Manager, after con-
ducting a thorough analysis of both perspectives and evidence, I have
reached the following verdict:

NON-FACTUAL. The answer that Queen Urraca of Castile was the
mother of Afonso II, the third king of Portugal, is incorrect. The evi-
dence provided shows that Afonso II was the son of King Sancho I
and Queen Dulcia, daughter of Ramén Berenguer IV of Barcelona.
Therefore, the answer contains false assumptions and incorrect con-
clusions. The Truth Seeker’s response is supported by the provided
evidence, while the Proprietary Model’s response is not accurate as it
did not consider the external evidence.

QUERY: Who is the Jeff Probst Show-nominated television producer’s
first wife?

RESPONSE: His first wife was psychotherapist Shelley Wright.
Correct Answer: Shelley Wright.

Returned by the tool: 1.Probst was married to his first wife, psychother-

apist Shelley Wright, from 1996 to 2001. In 2004,

Surv Ll

after filming on
vor: Vanuatu wrapp

(s, a

an dating one of the contest
23 year old Julie Berry - he
up in early 2008. 2

years her senior. They br

TRUTH GUARDIAN: FACTUAL. The answer that Jeff Probst’s first
wife was psychotherapist Shelley Wright is correct. According to
the evidence provided, Jeff Probst was previously married to Shelley
Wright, who is a *psychotherapist* in addition to being a television
producer. Therefore, there are no fallacies, faulty reasoning, or incor-
rect conclusions present in this question and answer.

TrUTH SEEKER: FACTUAL. According to the provided knowledge,
Jeff Probst’s first wife was psychotherapist Shelley Wright. Therefore,
the answer is correct and there are no fallacies, faulty reasoning, or
incorrect conclusions present in this question and answer.

TRUTH-TRIANGULATOR: As the Fact Verdict Manager, after evaluat-
ing the responses from both Al models and examining the provided
evidence, I have reached the following verdict:

FACTUAL. The answer that Jeff Probst’s first wife was psychother-
apist Shelley Wright is correct. Both Al models correctly identified
that there are no fallacies, faulty reasoning, or incorrect conclusions
present in the question and answer. The evidence provided confirms
that Jeff Probst was married to Shelley Wright from 1996 to 2001, and
that she is a psychotherapist in addition to being a television producer.
Therefore, the answer is factual and accurate.




Can We Edit Multimodal Large Language Models?

HRFTEEX TR, RINNEBENHER AR LR ZREEHN, RITFETHAE
MELSKEAEABRSHELR, wAEER. TRELEE, AMHRLELRNTTU
oG FEIE L, AR

%8 & OpenAI FF 7L 7 ChatGPTHY £ A Thed, ZHEASAREZHEA T —KRARN T E B
HENETREZEAANETEAEEZANANETFOARIEEER E G RDE, F
—NE SR SRR ATERE, N E s A e B EEGRETFAHTER
Ewye &, RFxIEAVisualGLM. BLIP 2FaMiniGPT-4%4,



Can We Edit Multimodal Large Language Models?

EEHMEFNEZESAESHEASN T IE—EAWHEK: X
% 71%. (Object Hallucination) - AR E R EW L L E
SHA, WaninstructBLIP, W HFAEFLRHIAE, LEL
AR EEFEFT 6 H W A

. 2EAEAMBALIESHIVIMS EXASZELELIEAKE
EPMEE I/ IR £ LN

2. —YLTW BA T R LB LIMs, BT F BLLMs A& 3k 5t 7 1E
— R/ BIR IR, FRSESIEEEA YA T IR
FiR, ML



Can We Edit Multimodal Large Language Models?

R — T DU S B P R AR A T, AR 4 ) B
7 — T T R B, SRR R, R AR LT E
GRMHER L, FERENHS SR, KTNF KB RE, ERIAAH
BERRBEAATH BRI BRAY, EEANELRTETHENR?

AXRAEEZRARBLZESAESTHEBNAATE, FEHRET ZHESEFEL 4
WY %8 7 = Bibenckmark, B3t T 2B ABEM BB ETHET HARERE.
HERUARARFE =, RETRELZRSEERANTH TR, ZFLZES
BA GBS R T B R



Can We Edit Multimodal Large Language Models?

A ladder is A
[on the ground.} X [is on the ground.} v

| I‘mage I
[ } (;6“ understandmg

_.error
| o

This picture
)I } ‘ depicts I

Fok

f.‘ '-f Updates

A clock looks like a little bear. | [A : J

Figure 1: Overview of the multimodal model editing
task. The editing target is to update the model’s under-
standing of the edited input (e.g., image or text), while
ensuring its interpretation of unrelated inputs remains
as consistent as possible.
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skyscrapers are there?

What is the number of
high-rise buildings in the city?
|

When did prison
break season 4 come out?

@ Edit scope * Edit target .. In-scope [l Out-of-scope
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EE. B TVQAIE, X EFF 6 FChatGLMZ 4 Ak
XA KRN ESE, &R Aprompt, X 1E
AR et H AL F . Image Captionft 4 & TH AR HH
B/ EE, £ RURIFAE, TUEFAIHET
JUFF AV CARZYE, REETFEAEEN T NIEN
Image CaptionfE &Mz L 1E %,

N a X T e, 1B FIFICOCOZ4E & R ry I F
W, BEAHARREFTAEWER £ KEA Stable
Diffusion 2. 1k A& G E R AHME F. Bk
AR T AT
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Diverse Text Generation }

o N

E] Question:

L "What are you looking for?"
(e i N
s Prompt Creation:
"Please rewrite the following
question in a different way.
Please do not include the i
original question... What are = @ ChatGLM:

| you looking for?" "What is it that you seek?" |

Prompt Optimization

0
---------------------------------------------------------------------------------------------------------------

Diverse Image Generation

( -

E] Caption:
"A wood table holding an
assortment of cooking utensils."

' Y i

a» Prompt Creation:

"A wood table holding an...
Positive prompt: masterpiece.
best quality... Negative prompt:
EasyNegative. disfigured..."

. o
---------------------------------------------------------------------------------------------------------------
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HTREERESE, FENTHZEREIFRBNER WG, AT
UK e & M3 4 4 T Text StabilityliX#3E f2Vision
StabilitylliR#IE. XA HEFRALLE, FEEEER T Z0H
CHEHBEE. TR, BFAMNDFHNQKIESE, T L2HELHKIE,
CEMEF T £ T IR Y 5] B 4048 S OK-VQAE i MK 25 48 & .

BEHIRERITUNT:

TASK Train Test  L-Locality M-Locality

E-VQA 6,346 2,093 4,289 5,046
E-IC 2,849 1,000 4,289 5,046
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SR SR A R i

MT o ERmELSESIEEHERE, XFERWARANT L& B4
T, RRITEZEAEMRELL, UWVQAMESE HF T, AKREM
VQAAR El B A # F# 45 8 7] gE

Mo didh: AERTRARFRAZAN MBS, TEFH, W
ARl AMA TS A ER M. Flm ANkEeT EZERTEL
HWIRAE R ERFE, e aEReRANES Eds. i,
XEMEER M T Vision Edit, 4 xVLMs YA A S 24T 4 45

A AR REIEAIRA T EHF T KRR, B2 K 58 A
WE B H S A ERFAENFR, XHPFEAN “FHEIL” KR,
ErxtixA~E L, fE#H R T Language Edit, # T 2 EAEE AW
FoiR EAR K B TLLMs, FTUXH a4 iE s H£A,
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ZRAEA RN £ B RE R FEW T B AR

_______________________

- ] - - —

@l Encoder

- - -

g

L Jepp—

__________

ﬁ Before Editing

________

YA bird is flying on the sky.]

(-L) After Editing

What are shown
Queries in the photo?

ﬁA kite is flying in the sky. ]

o’

________________

I

I

I

I

: ............ : ...'.z ................................. l' £7\| l in en the Sky
A 8@8% | QR =i
1 & 1k @@ LS :

' € N P e o ! | || e R |

1 &l A bird is a warm-blooded, iy ! 1 r_ ________
I I |

: f)ﬁe:id:iammalhyseggthwmgs a : '\ Vision Area s E \\Lanauage Area 5}} l on the Sky 5
1 2. A kate 1s a toy or a lightweight | Vemmmmeem=dd-= [N (| — TTTTTTTTTTA — ____r___

1 object that 1s flown in the air. 1

I |

N A \VISIOH Edit \Languoge Edit

-

______________




Can We Edit Multimodal Large Language Models?

Epiming VQA EpiTING IMAGE CAPTION
Method Reliability T T-Generality T T-Locality T M-Locality T Reliability T T-Generality T T-Locality T M-Locality T
BLIP-2 OPT Size: 3.8B
Base Model 0.00 0.00 100.0 100.0 0.00 0.00 100.0 100.0
Base Methods ~ FT (vision block) 56.28 29.88 100.0 11.32 0.08 0.00 100.0 131
FT (last layer) 58.70 15.33 78.86 2.86 0.24 0.10 67.67 3.91
Knowledge Editor 67.80 63.00 97.32 45.89 69.00 62.80 06.21 45.55
Model Editine  In-Context Editing 99.95 91.59 13.16 1.88 96.70 78.20 13.36 2:1]
SERAC 91.20 01.40 100.0 0.33 94.40 96.00 100.0 0.47
MEND 92.60 90.80 96.07 65.15 65.00 38.00 92.67 592,
MiniGPT-4 Size: 7.3B
Base Model 0.00 0.00 100.0 100.0 0.00 0.00 100.0 100.0
Base Methods ~ FT (vision block) 39.58 0.98 100.0 3.96 0.63 0.00 100.0 5213
FT (last layer) 39.57 0.58 72.01 16.42 2:75 0.00 35.52 9.28
Knowledge Editor 87.77 86.62 97.15 55.77 35.10 24.20 96.78 52272
Model Editing In-Context Editing 71.72 40.23 13.46 2.00 68.60 59.80 12.51 2.96
SERAC 87.20 84.60 100.0 0.33 40.20 36.60 100.0 0.97
MEND 95.51 05.27 08.73 7:1:33 87.10 84.10 08.34 59.53

o DLE BIROR B R A R — A, T H 23 TR A ey I R e
KAErERS, BERREAT FEERIAWHLAE, FESTELW
REEWER R, T8RRI PaF K AER TS



Can We Edit Multimodal Large Language Models?

FH TR R AR RN E &, RHEESHEAH, T UALEDHER
Wi, MAmBENEH s R in N, mHAH 2 oA RH 2Rk FAE
LLMs ¥ 87, BBl SRy R E. &5 &7 LA % Hcase:

[ % (" R % o
Before Editing Before Editing Before Editing
* ®
] ]
[ What is the man doing? L’] [What are shown in the photo? L i { What is the train number?L -
[ | [ R | LA
w . A photo getting on a bus that has
L A L)icycles on the rack. : J 17788.
L DAY o
)

a3 » 7 - i it
After Editing After Editing After Editing

®
]
[ What is the man doing? L ) [What are shown in the photo? L ) [ What is the train number? L )
L2 N | [}
_ Skateboarding. | A person getting on a bus that has
o (pung ibicycles on the rack. A
. N N 7

Case of successful VQA editing (By SERAC) Case of successful Image Caption editing (By SERAC) Case of failure VQA editing (By IKE)
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SRABAZEFERNIE, wmRE 0w le )% 7] 2R S E R
pREVE A, BARBE AR NMAER R EM.T — T ER, EE
ELSBESER LRAFFLZ T RAM T, WAt aees E4 80 AT 1
[FIAR S Z B[ ey T B S 48 7 oo o AR R G BB OODELHE ? W T L 2| 2 A v &
SimiET XEAERRERREITHNA H,



Thank you




