#### ChatGPT 信息抽取

- 在 Standard-IE 场景下,性能较低
- 在 OpenIE 场景下,性能优异
- 能对判断原因给出高质量、令人信服的解释
- 过度自信(预测信心与概率不符)
- 判断过程能够围绕着输入进行(忠实度较高)

## 评估

#### • 角度

- 性能 (Performance): 在多个 IE 任务上的总体性能表现
- 解释性 (Explainability): 能否对判断给出合理的解释
- 偏置性 (Calibration): 预测信心与实际概率的偏离程度
- 忠实性 (Faithfulness): 判断过程是否围绕输入

#### 场景

- Standard-IE: 答案从候选标签集合中选择,即指令中包括任务描述、输入文本、模板和标签集合
- OpenIE: 没有候选标签,模型通过理解任务描述、输入文本和模板来生成预测

| Keys                   | Explanation                                                        |
|------------------------|--------------------------------------------------------------------|
| Performance            |                                                                    |
| Open                   | Directly ask ChatGPT to predict the class without the label set.   |
| Standard               | ChatGPT's most likely correct class with a given label set.        |
| Top3                   | The three most likely classes of the given label set from ChatGPT. |
| Top5                   | The five most likely classes of the given label set from ChatGPT.  |
| ifOpen_Correct(Manual) | Manually annotate whether the "Open" is reasonable.                |
| Explainability         |                                                                    |
| Reason_Open            | The reason why ChatGPT chooses the class in "Open".                |
| Reason_Standard        | The reason why ChatGPT chooses the class in "Standard".            |
| ifR_Open               | Does ChatGPT think that "Reason_Open" is reasonable?               |
| ifR_Standard           | Does ChatGPT think that "Reason_Standard" is reasonable?           |
| ifR_Open(Manual)       | Manually annotate whether the "Reason_Open" is reasonable.         |
| ifR_Standard(Manual)   | Manually annotate whether the "Reason_Standard" is reasonable.     |
| Calibration            |                                                                    |
| Confidence_Open        | The confidence of ChatGPT in predicting "Open".                    |
| Confidence_Standard    | The confidence of ChatGPT in predicting "Standard".                |
| Faithfulness           |                                                                    |
| FicR_Open(Manual)      | Manually annotate whether the "Reason_Open" is fictitious.         |
| FicR_Standard(Manual)  | Manually annotate whether the "Reason_Standard" is fictitious.     |

#### Input of Event Detection (ED)

**Task Description:** Given an input list of words, identify all triggers in the list, and categorize each of them into the predefined set of event types. A trigger is the main word that most clearly expresses the occurrence of an event in the predefined set of event types.

Pre-defined Label Set: The predefined set of event types includes: [Life.Be-Born, Life.Marry, Life.Divorce, Life.Injure, Life.Die, Movement.Transport, Transaction.Transfer-Ownership, Transaction.Transfer-Money, Business.Start-Org, Business.Merge-Org, Business.Declare-Bankruptcy, Business.End-Org, Conflict.Attack, Conflict.Demonstrate, Contact.Meet, Contact. Phone-Write, Personnel.Start-Position, Personnel.End-Position, Personnel.Nominate, Personnel. Elect, Justice.Arrest-Jail, Justice.Release-Parole, Justice.Trial-Hearing, Justice.Charge-Indict, Justice.Sue, Justice.Convict, Justice.Sentence, Justice.Fine, Justice.Execute, Justice.Extradite, Justice.Acquit, Justice.Appeal, Justice.Pardon].

**Input and Task Requirement:** Perform ED task for the following input list, and print the output: ['Putin', 'concluded', 'his', 'two', 'days', 'of', 'talks', 'in', 'Saint', 'Petersburg', 'with', 'Jacques', 'Chirac', 'of', 'France', 'and', 'German', 'Chancellor', 'Gerhard', 'Schroeder', 'on', 'Saturday', 'still', 'urging', 'for', 'a', 'central', 'role', 'for', 'the', 'United', 'Nations', 'in', 'a', 'post', '-', 'war', 'revival', 'of', 'Iraq', '.'] The output of ED task should be a list of dictionaries following ison format. Each dictionary corresponds to the occurrence of an event in the input list and should consists of "trigger", "word\_index", "event\_type", "top3\_event\_type", "top5\_event\_type", "confidence", "if\_context\_dependent", "reason" and "if\_reasonable" nine keys. The value of "word\_ index" key is an integer indicating the index (start from zero) of the "trigger" in the input list. The value of "confidence" key is an integer ranging from 0 to 100, indicating how confident you are that the "trigger" expresses the "event\_type" event. The value of "if\_context\_dependent" key is either 0 (indicating the event semantic is primarily expressed by the trigger rather than contexts) or 1 (indicating the event semantic is primarily expressed by contexts rather than the trigger). The value of "reason" key is a string describing the reason why the "trigger" expresses the "event\_type", and do not use any "mark in this string. The value of "if\_reasonable" key is either 0 (indicating the reason given in the "reason" field is not reasonable) or 1 (indicating the reason given in the "reason" field is reasonable). Note that your answer should only contain the json string and nothing else.

# Standard-IE 性能

| Task                  | Dataset       | BERT        | RoBERTa     | SOTA                           | ChatGPT    |
|-----------------------|---------------|-------------|-------------|--------------------------------|------------|
| Entity                | BBN           | 80.3        | 79.8        | 82.2 (Zuo et al., 2022)        | 85.6       |
| Typing(ET)            | OntoNotes 5.0 | 69.1        | 68.8        | 72.1 (Zuo et al., 2022)        | 73.4       |
| Named Entity          | CoNLL2003     | 92.8        | 92.4        | 94.6 (Wang et al., 2021)       | 67.2       |
| Recognition(NER)      | OntoNotes 5.0 | 89.2        | 90.9        | 91.9 (Ye et al., 2022)         | 51.1       |
| Relation              | TACRED        | 72.7        | 74.6        | 75.6 (Li et al., 2022a)        | 20.3       |
| Classification(RC)    | SemEval2010   | 89.1        | 89.8        | 91.3 (Zhao et al., 2021)       | 42.5       |
| Relation              | ACE05-R       | 87.5   63.7 | 88.2   65.1 | 91.1   73.0 (Ye et al., 2022)  | 40.5   4.5 |
| Extraction(RE)        | SciERC        | 65.4   43.0 | 63.6   42.0 | 69.9   53.2 (Ye et al., 2022)  | 25.9   5.5 |
| Event                 | ACE05-E       | 71.8        | 72.9        | 75.8 (Liu et al., 2022a)       | 17.1       |
| <b>Detection(ED)</b>  | ACE05-E+      | 72.4        | 72.1        | 72.8 (Lin et al., 2020)        | 15.5       |
| <b>Event Argument</b> | ACE05-E       | 65.3        | 68.0        | 73.5 (Hsu et al., 2022)        | 28.9       |
| Extraction(EAE)       | ACE05-E+      | 64.0        | 66.5        | 73.0 (Hsu et al., 2022)        | 30.9       |
| Event                 | ACE05-E       | 71.8   51.0 | 72.9   51.9 | 74.7   56.8 (Lin et al., 2020) | 17.0   7.3 |
| Extraction(EE)        | ACE05-E+      | 72.4   52.7 | 72.1   53.4 | 71.7   56.8 (Hsu et al., 2022) | 16.6   7.8 |

## OpenIE 性能

## top-k 召回率

|                 | Standard-IE | OpenIE |
|-----------------|-------------|--------|
| BBN(ET)         | 86.8%       | 97.2%  |
| CoNLL(NER)      | 69.0%       | 93.3%  |
| SemEval2010(RC) | 43.3%       | 84.3%  |
| ACE05-R(RE)     | 14.9%       | 23.9%  |
| ACE05-E(ED)     | 12.4%       | 42.6%  |
| ACE05-E(EAE)    | 17.3%       | 65.3%  |
| ACE05-E(EE)     | 4.9%        | 28.8%  |

|             | _     | top-3 | _                               |
|-------------|-------|-------|---------------------------------|
| BBN         | 85.6% | 92.7% | 94.9% (+9.3%)                   |
| SemEval2010 | 42.5% | 62.1% | 94.9% (+9.3%)<br>76.0% (+33.5%) |

# 解释性&忠实性

|                              | Stardand Setting |             |         | OpenIE Setting |             |         |
|------------------------------|------------------|-------------|---------|----------------|-------------|---------|
|                              | Self-check       | Human-check | Overlap | Self-check     | Human-check | Overlap |
| BBN (ET)                     | 100.0%           | 99.2%       | 99.2%   | 100.0%         | 99.5%       | 99.5%   |
| CoNLL (NER)                  | 100.0%           | 99.3%       | 99.3%   | 100.0%         | 99.7%       | 99.7%   |
| SemEval (RC)                 | 100.0%           | 100.0%      | 100.0%  | 100.0%         | 99.7%       | 99.7%   |
| ACE05-R ( $RE$ )             | 100.0%           | 90.0%       | 90.0%   | 100.0%         | 100.0%      | 100.0%  |
| ACE05-E $(ED)$               | 100.0%           | 96.3%       | 96.3%   | 100.0%         | 90.2%       | 90.2%   |
| ACE05-E ( $EAE$ )            | 100.0%           | 74.1%       | 74.1%   | 100.0%         | 90.4%       | 90.4%   |
| <b>ACE05-E</b> ( <i>EE</i> ) | 100.0%           | 47.1%       | 47.1%   | 94.0%          | 78.0%       | 74.0%   |

|                               | Stardand-IE | OpenIE |
|-------------------------------|-------------|--------|
| $\overline{\mathbf{BBN}(ET)}$ | 98.3%       | 99.3%  |
| CoNLL(NER)                    | 100.0%      | 98.7%  |
| SemEval(RC)                   | 100.0%      | 99.1%  |
| ACE05-R(RE)                   | 90.0%       | 93.8%  |
| ACE05-E(ED)                   | 100.0%      | 100.0% |
| ACE05-E(EAE)                  | 100.0%      | 96.5%  |
| ACE05-E(EE)                   | 100.0%      | 97.0%  |

决策过程围绕着输入原始文本展开

# 偏置性

|              | <b>Correct Confidence</b> |         |         | <b>Incorrect Confidence</b> |         |         |
|--------------|---------------------------|---------|---------|-----------------------------|---------|---------|
|              | BERT                      | RoBERTa | ChatGPT | BERT                        | RoBERTa | ChatGPT |
| BBN(ET)      | 0.971                     | 0.968   | 0.888   | 0.904                       | 0.885   | 0.828   |
| CoNLL(NER)   | 0.990                     | 0.991   | 0.864   | 0.866                       | 0.886   | 0.785   |
| SemEval(RC)  | 0.983                     | 0.989   | 0.868   | 0.871                       | 0.852   | 0.839   |
| ACE05-R(RE)  | 0.995                     | 0.991   | 0.760   | 0.883                       | 0.810   | 0.764   |
| ACE05-E(ED)  | 0.882                     | 0.944   | 0.852   | 0.770                       | 0.871   | 0.737   |
| ACE05-E(EAE) | 0.762                     | 0.785   | 0.956   | 0.525                       | 0.555   | 0.910   |
| ACE05-E(EE)  | 0.763                     | 0.782   | 0.845   | 0.612                       | 0.628   | 0.764   |

|              | BERT  | RoBERTa | ChatGPT |
|--------------|-------|---------|---------|
| BBN(ET)      | 0.012 | 0.012   | 0.026   |
| CoNLL(NER)   | 0.052 | 0.044   | 0.204   |
| SemEval(RC)  | 0.023 | 0.031   | 0.460   |
| ACE05-R(RE)  | 0.020 | 0.014   | 0.745   |
| ACE05-E(ED)  | 0.161 | 0.226   | 0.656   |
| ACE05-E(EAE) | 0.154 | 0.168   | 0.699   |
| ACE05-E(EE)  | 0.211 | 0.288   | 0.699   |

预测信心与真实概率不符(过度自信)

#### 借助 ChatGPT 构建知识图谱



ChatGraph: Interpretable Text Classification by Converting ChatGPT Knowledge to Graphs

## 步骤一: 文本精炼

Please generate a refined document of the following document. And please ensure that the refined document meets the following criteria:

- 1. The refined document should be abstract and does not change any original meaning of the document.
- The refined document should retain all the important objects, concepts, and relationships between them.
- 3. The refined document should only contain information that is from the document.
- 4. The refined document should be readable and easy to understand without any abbreviations and misspellings.

Here is the content: [x]

修正语法和拼写错误 替换同义词 阐明原文的句子结构

#### 步骤二: 知识图谱抽取

- You are a knowledge graph extractor, and your task is to extract and return a knowledge graph from a given text.Let's extract it step by step:
- (1). Identify the entities in the text. An entity can be a noun or a noun phrase that refers to a real-world object or an abstract concept. You can use a named entity recognition (NER) tool or a part-of-speech (POS) tagger to identify the entities.
- (2). Identify the relationships between the entities. A relationship can be a verb or a prepositional phrase that connects two entities. You can use dependency parsing to identify the relationships.
- (3). Summarize each entity and relation as short as possible and remove any stop words.
- (4). Only return the knowledge graph in the
   triplet format: ('head entity', 'relation
  ', 'tail entity').
- (5). Most importantly, if you cannot find any
   knowledge, please just output: "None".
  Here is the content: [x]

**Chain Of Thoughts** 

模板由循序渐进的指令组成

# 性能

| Method                     | Training Data              | 20NG                                  | R8                                      | R52                                         | Ohsumed                                 |
|----------------------------|----------------------------|---------------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|
| TF-IDF+LR                  | Full data                  | $83.19 \pm 0.00$                      | $93.74 \pm 0.00$                        | $86.95 \pm 0.00$                            | $54.66 \pm 0.00$                        |
| TextGCN<br>(1 layer)       | Full data                  | 78.85 <sub>±0.10</sub>                | 86.74 <sub>±0.10</sub>                  | $73.86 \pm 0.11$                            | $50.25 \pm 0.08$                        |
| TextGCN (2 layers)         | Full data                  | 86.34 <sub>±0.09</sub>                | 97.07 <sub>±0.10</sub>                  | 93.56 <sub>±0.18</sub>                      | $68.36_{\pm0.56}$                       |
| ChatGPT                    | 0-shot<br>2-shot<br>5-shot | $58.70_{\pm 0.00}$ $58.44_{\pm 0.00}$ | $60.10_{\pm 0.00}$ $72.54_{\pm 0.00}$   | $75.23 \pm 0.00$ $81.68 \pm 0.00$           | $39.93 \pm 0.00$ $47.05 \pm 0.00$       |
| ChatGraph                  | Full data                  | $79.15_{\pm 0.08}$                    | $\frac{82.43 \pm 0.00}{96.39 \pm 0.34}$ | $\frac{90.13_{\pm 0.00}}{92.14_{\pm 0.26}}$ | $\frac{45.39 \pm 0.00}{60.79 \pm 0.14}$ |
| ChatGraph<br>(with TF-IDF) | Full data                  | $79.68 \pm 0.37$                      | $96.46 \pm 0.31$                        | $93.25 \pm 0.32$                            | $63.63 \pm 0.33$                        |